连云港山地车价格联盟

新能源汽车底盘技术揭秘与传统汽车大相径庭!

车都微资讯 2018-06-20 08:51:28

提示点击上方"车都微资讯"关注 更多内容! 


新能源汽车的设计上使用环保材料,大大降低了汽车运行中的污染物排放量。目前中国已经着力于新能源汽车的研究,并被作为新兴产业被提出来。

1 汽车底盘技术的发展

自行车的零部件在早些时候,通过一定的改进,变成了汽车的底盘,比如滚动轴承、钢管构架、链传动等,但后来汽车行业不断发展,汽车的底盘的变化越来越大,当然这些都是差速器、摩擦片式离合器、齿轮变速器研究成功的结果,还采用了如万向节传动轴、充气轮胎、锥齿轮主减速器、后桥半独立悬架等等,来完善汽车底盘。相对于传统的汽车底盘,现代的汽车底盘发展已经趋于成熟,各方面的性能都得到良好提升。可是电子信息技术不断发展,给汽车底盘又带了更深层次的发展空间,为汽车在高科技领域的应用打好基础,创造出更安全更舒适更稳定的底盘技术。

1.1 现代汽车底盘电子化

随着各种汽车电子辅助功能在底盘上的应用明显提高了汽车的主动安全性和驾驶舒适性,这些系统包括ABS/ASR/ESP集成控制系统、自适应巡航控制系统(ACC)、泊车辅助系统(PLA)、车道偏离和驾驶员警示系统、胎压监测系统(TPMS)、可调阻尼控制系统(ADC)等。随着底盘电子控制系统越来越向电子化、智能化、网络化方向发展。

1.2 底盘零件新材料和新工艺的应用

汽车底盘在未来的发展方向之一便是汽车轻量化, 对于轻质合金材料和高强度钢的需求量在未来将会大大增加;底盘上对于铝合金的运用也会越来越多;镁合金的需求量也呈增长的态势。但是,也要不断研究一些新型设计来满足汽车零部件重量轻的需求。

底盘零件的稳定性就是汽车的安全基础,要做到强度、柔韧性、抗疲劳、抗损坏等性能,汽车车架和车桥对于管材液压成形技术的运用也会越来越频繁,压力加工技术向着高效、自动减轻汽车重量、降低成本等方向发展。底盘铸件正在向高性能、薄壁、轻质、精(确)尺寸、优良切削性能方向发展;铸造生产过程向清洁、废物再生、高效、节能、节材、环保的绿色铸造方向发展。底盘零部件的机械切削加工技术已经抛弃了传统模式,而发展为柔性技术为特点的生产线生产的生存模式。高效、精密、柔性化、自动化是切削加工技术变化的主要趋势。高速加工技术、敏捷制造技术、智能化加工技术、绿色加工技术等都将得到快速发展。汽车零件的防护性电镀由原来单一的镀锌钝化工艺,向耐蚀性能更好且具有耐热、低氢脆性、良好加工性能及环保性能的锌合金镀层及无铬达克罗工艺发展。在镀层的耐腐蚀性能获得很大提高的同时,正向镀层耐热性能好、低摩擦系数方向发展。在底盘领域,随着对环保要求的不断提高,目前,世界各大汽车公司正在集中开发环境友好的零件,如低滚动阻力轮胎、绿色轮胎、不含铅的车轮平衡块、不含六阶铬的新零件涂层技术、电动转向系统等,相信不久的将来,底盘技术一定会朝着保护环境的方向越走越广阔。

2 底盘设计要求

底盘设计考虑的关键在于满足整车性能的各项指标。汽车应当具备的基本性能可概括为动力性、经济性、制动性、操稳性、平顺性、安全性和耐久性。一般所说的底盘工程包括前后悬架、转向系、制动系和车轮的设计配置。与这些系统直接相关的整车性能有制动性、操稳性和平顺性。底盘的悬架部件本身要足够牢固,而其设计是否到位直接影响车架车身的受力大小,同时底盘设计也和耐久性相关。

3 新能源汽车底盘设计的完善

3.1 完善新能源汽车底盘设计需要注意的问题

要对新能源汽车底盘设计进行完善,就要从三个方面思考问题。

其一,汽车底盘设计平台的应用,即在底盘设计中,包括底盘设计的构架,以及其子系统都需要保持不变。

其二,传统发动机存在的弊端不少,可以将其取消,采用最新研发的转向系统和传动系统。要根据原有的框架对汽车底盘子系统进行适当的改进。例如,要保留子系统底盘设计的设计方案,要严格更换有问题的发动机。所以,对于底盘的设计来说,不仅要安装真空动力泵,还有适当调整构架,达到改善真空源的目的。当然,也要改变新的动力系统的减速器接口。在零部件设计完的基础上,还要用CAE分析法对悬置系统进行运用,达到减轻噪音的目的。

其三,车体后舱的布局会随着子系统采用的新的设计方案而改变,经过一系列对于荷载已经车的质量进行详细核算,保证悬架系统安全系数。不然,就要对子系统进行重设,这时候就要做好调整悬架系统的任务工作,分析新能源汽车的前轴荷的分布情况以及后轴荷的分布情况,会发现要重新设计悬架系统的参数。确定好悬架四轮定位参数,用Adams分析进行确定,但是最好尽量保证原有的设计方案,和实际相结合,这样可以有效节省开发周期,减小成本开发。

3.2 新能源汽车保持承载式车身

新能源汽车保持承载式车身,在于很多汽车都会采用这种设计。由于副车架并不能够承担车身质量的相关功能,因此,在动力总成部件的设计上,需要将悬置点确定下来。车身的悬置设计中,要对车身进行量化分析,可以采用CAE分析方法,可以在一定程度上避免由于悬置设计空间不规范而导致的总体布设困难。

3.3 新能源汽车运用非承载式车身

汽车车身采用非承载式设计,由于底盘可形成比较大的框架而使得底盘的承载力增强,其中可以布设全部的动力系统。所以,在新能源汽车设计的初期,就要规划好进行部件,不仅可以提高总体布置的简易程度,而且随着车身重心的降低而使得车身的整体质量有所减轻。

4 结束语

综上所述,虽然新能源汽车已经被现代人接受,但是,由于新能源汽车的底盘系统设计依然会采用普通车辆的底盘设计方法,就会对新能源汽车的使用功能带来影响。因此,在新能源汽车的设计中,就要在汽车底盘设计予以改进。

如何设计提高电池电芯的容量密度?

电池材料

提高电池的能量密度(仅限于容量型电池),是设计电池的第一要务。

容量不够,单价再低、循环再好、安全性再高,做出来的电池也可能无人问津。那么如何才能提高电池的能量密度呢?主要可以从几个方面考虑:

1.增加对电池容量有贡献的材料的性能;

2.减少对电池容量没有贡献的材料的体积;

3.使用更先进的生产设备;

4.改进制成工艺条件并进行更严格的生产监控;

5.对影响容量的杂项进行优化;

下面开始分类分别讨论:

1.增加对电池容量有贡献的材料的性能:这里主要就是对正负极活性物质而言,是提高容量密度最为直接的方法。主要的方向包括:

①使用克发挥更大的材料:例如正极的富锂材料、高电压三元材料、高电压钴酸锂材料、二元材料等;负极的软碳硬碳、硅锡基化合物等。

②使用压实密度更大的正负极材料。

③使用粘结性、导电性更好的活性物质:这样可以减少粘结剂、导电剂在敷料中的含量,从而提高单位质量敷料所能发挥的容量;另外粘结剂、导电剂的用量减少也可以提高材料活性物质的压实等加工性能。

④使用厚度反弹更小的材料:锂离子电池循环后,厚度会有一定的反弹;设计时需要预留循环后的反弹厚度;而当使用了厚度反弹更小的材料时(依目前所见来看,这些材料也同时是循环性能很好的材料),则可以将省掉的厚度反弹预留空间转给电芯的设计厚度,从而增加电芯的设计容量。

⑤选择搭配性能更优的材料体系:单一的“好正极”、“好负极”与“好电解液”搭配在一起,并不能保证做出“好电池”。匹配性不好的材料组合在一起,不仅会降低电池的循环性能,也可能影响到倍率性能甚至正负极的克发挥;同理,当材料匹配性更好时,克发挥、循环、膨胀率等性能或许都可以得到改善。

随着锂离子电池材料技术的日益成熟,常见的钴酸锂和石墨的潜能已经近乎发挥到了极限。而今后如果能生产出成熟的其他体系,则对锂离子电池的能量密度提升将会有革命性的影响!

2.减少对电池容量没有贡献的材料的体积:这一项比较杂,主要包括:使用更薄的铝塑膜、使用更薄的电池隔膜、使用更薄的极耳、使用更薄的铜箔和铝箔、使用更薄的透明胶纸等。

可以看出,这方面的改善基本都以“薄”为定语。在有限的体积下,对容量无直接贡献的铝塑膜、隔膜等的体积的减少,就意味着能够提供容量的化学物质的增多,从而提高电芯容量。

但是当这些材料更薄时,其机械强度、安全性能就会受到影响;这一方面需要辅料制造厂能在基本不降低材料性能的前提下缩小体积,一方面又需要电芯制造厂变更工艺、制成参数甚至设备(例如,更薄的铝箔意味着更高的棍压延伸系数并增加涂布、棍压时的断片概率;更薄的隔膜有更高的短路率风险;更薄的铝塑膜更容易产生脚位破损;更薄的极耳会降低电池的倍率性能等等)。

更换这些更薄的材料需要电池厂做大量的认证,试产数量过少则无法准确得出统计数据,过多万一问题太大则又造成了浪费。与提高活性物质性能相比,降低非活性物质的含量显得思路更多,涉及到得方面也同样宽泛。

3.使用更先进的生产设备:先进的设备主要是为了提高制成的一致性、减少生产的波动,进而达到在不变更均值的前提下提高最小值,而决定一批电芯质量的,恰恰是这里所说的被提高的最小值。举下面两个例子:

①当涂布机的涂布公差更小时,最小容量/设计容量就可以提高,如果客户是对最小容量有要求的话,那就相当于在设计容量不变时,提高了最小容量,也就是说提高了评估给客户的电芯的容量;同时正负极的涂布偏差降低,在考虑了首次效率、循环后容量衰减等因素后,设计负极过量就可以适度降低,从而电池有更多的正极材料、也就相当于有了更多的容量。

②当滚压机的精确度提高后,由于实际滚压时误差的减少,设计压实就可以更为接近材料的最大压实,从而提高设计容量和制成电芯容量;滚压出极片的厚度更为一致,这样就相当于增加了电芯厚度的一致性,进而可以在设计时选择更小的maxTHK-designTHK,从而提高设计容量(分切刀宽度、卷尺宽度、分容柜精确度等与之类似,不再赘述)。

4.改进制成条件并进行更严格的生产监控。生产控制方面学问颇多,列举一二:

①减少滚压后到卷绕前的转序时间:这样可以减少极片的厚度反弹,从而更好的控制电芯厚度。电芯厚度如果明显低于最大厚度的话,就可以适当提高设计厚度,从而提高电芯设计容量。

②稳定分容房的温度:温度对电芯分容容量的影响颇大,低温可能造成将容量本合格的电芯作为低容而转到二次分容从而浪费资源,高温则可能将容量较差的电芯作为合格品出货。

如同短板原理一样,一批电芯的容量,以出货电芯的最低值计,一批电芯的厚度,以出货电芯的最大厚度计。人的操作在目前我国这种劳动力密集型产业中,对产品的质量影响尤为重要。生产中,若操作人员和品质人员可以尽量低的减少人为操作的误差、减少制成时的波动,也就相当于增加了木桶中最短板的长度,从而提高了电池的容量、减少了电池的厚度。

5.对影响电芯容量的杂项进行优化。

满充电芯拆开,负极主体应该是均匀的完美金黄色。但是当人为操作、材料和设备乃至设计出现问题时,各类的小毛病例如:卷芯负极第一圈析锂、隔膜打皱处析锂、涂布时正负极尾部膜密度不均匀析锂等问题就会出现。从容量角度来看,析锂很可能造成容量的偏低;若可以杜绝类似情况,则相当于增加了电芯的容量;若无法杜绝此类情况,则需要从设计上更准确的预测其发生的概率和可能产生的影响的大小,从而避免一些电芯由于本可以预测到的问题而被报废。


编辑︱闵黎   图片︱转载

来源︱原创

出品︱新闻信息中心

投稿及合作︱13007113850